Calculus and Advanced Topics 2013

1. Let $\lim_{x\to 10} f(x) = 4$ and $\lim_{x\to 10} g(x) = -6$. Find $\lim_{x\to 10} [f(x) \cdot g(x)]$. a. -2 b. -6 c. 10 d. 24

e. -24

a. b. c.

e.

2. Decide if the limit exists. If the limit exists, find its value.

a. 0
b.
$$\frac{1}{49}$$

c. Does not exist
d. $-\frac{1}{49}$
e. 1

3. Find the equation of the secant line through the points where x has the given values.

$$f(x) = 3\sqrt{x} ; x = 9, x = 25$$

a. $y = -\frac{3}{8}x + \frac{45}{8}$
b. $y = \frac{3}{8}x - \frac{45}{8}$
c. $y = \frac{3}{2\sqrt{x}}$
d. $y = -\frac{8}{3}x + 33$
e. $y = \frac{3}{8}x + \frac{45}{8}$

4. Find the equation of the tangent line to the curve when x has the given value.

$$f(x) = \frac{18}{x}$$
; $x = 3$

a. y = -2x + 6b. y = -2xc. y = -2x + 12d. y = -4x + 18e. $y = \frac{1}{2}x - \frac{9}{2}$

5. Find f'(x) when x has the given value.

$$f(x) = 2x^2 - 3x$$
; $x = 13$

a. 52x - 3
b. 4
c. 55
d. 1211.1667
e. 49

- 6. The profit from the expenditure of x thousand dollars on advertising is given by $P(x) = 950 + 25x 3x^2$. Find the marginal profit when the expenditure is x = 9.
 - a. 950 thousand dollars
 - b. 171 thousand dollars
 - c. -29 thousand dollars
 - d. 225 thousand dollars
 - e. -79 thousand dollars
- 7. If the price of a product is given by $P(x) = \frac{1024}{x} + 2000$, where x represents the demand for the product, find the rate of change of price when the demand is 8.
 - a. 4
 - b. 128
 - c. -128
 - d. 16
 - e. -16
- 8. Use the product rule to find the derivative of $f(y) = (y^{-2} + y^{-1})(3y^{-3} 7y^{-4})$

a.
$$f'(y) = \frac{42+16y-3y^2}{y^7}$$

b. $f'(y) = \frac{42-20y+12y^2}{y^7}$
c. $f'(y) = \frac{42+20y-12y^2}{y^7}$
d. $f'(y) = \frac{42+50y-12y^2}{y^7}$
e. $f'(y) = \frac{42+20y+12y^2}{y^7}$

9. Use the quotient rule to find the derivative of $f(x) = \frac{x^{1.7}+3}{x^{3.1}+1}$

a.
$$f'(x) = \frac{-1.4x^{3.8} + 1.7x^{0.7} - 9.3x^{2.1}}{(x^{3.1} + 1)^2}$$

b. $f'(x) = \frac{-1.4x^{3.8} - 1.4x^{0.7} - 9.3x^{2.1} - 9.3}{(x^{3.1} + 1)^2}$
c. $f'(x) = \frac{-1.4x^{3.8} + 1.7x^{0.7} - 3.1x^{1.7} - 9.3x^{2.1} - 9.3}{x^{3.1} + 1}$
d. $f'(x) = \frac{-1.4x^{3.8} + 1.7x^{0.7} - 3.1x^{1.7} + 3x^{2.1} - 9.3}{(x^{3.1} + 1)^2}$
e. $f'(x) = \frac{-1.4x^{3.8} + 1.7x^{0.7} + 9.3x^{2.1}}{(x^{3.1} + 1)^2}$

- 10. At what points on the graph of $f(x) = 2x^3 9x^2 27x$ is the slope of the tangent line -3?
 - a. (1,-34), (16,-164)
 - b. (-1,16), (4,-124)
 - c. (-1,16), (1,-34)
 - d. (0,0), (4,-144)
 - e. (1, -34) (-4, -164)
- 11. The formula $E = 1000(100 T) + 580(100 T)^2$ is used to approximate the elevation (in meters) above sea level at which water boils at a temperature of *T* (in degrees Celsius). Find the rate of change of *E* with respect to *T* for a temperature of 75°C.
 - a. 30,000 m/°C
 - b. -73,500 m/°C
 - c. -30,000 m/°C
 - d. -29,000 m/°C
 - e. 28,000 m/°C
- 12. The median weight, w (in pounds), of a girl between the ages of 0 and 36 months can be approximated by the function $w(t) = 0.0006t^3 0.048t^2 + 1.61t + 7.60$, where t is measured in months. For a girl of median weight, find the rate of change of weight with respect to time at age 20 months.
 - a. 0.086 lb/mo
 - b. 0.410 lb/mo
 - c. 1.362 lb/mo
 - d. 0.882 lb/mo
 - e. Cannot be determined since w(t) is not differentiable at t = 20 months

- 13. When a particular circuit containing a resistor, an inductor, and a capacitor in series is connected to a battery, the current *i* (in amperes) is given by $i = 24e^{-3t}(e^{2.6t} e^{-2.6t})$ where *t* is the time (in seconds). Find the time at which the maximum current occurs. Round to the nearest tenth of a second.
 - a. 0.6 sec
 - b. 1.4 sec
 - c. 1.5 sec
 - d. 0.5 sec
 - e. There is no absolute maximum value.

14. Using a graphing calculator, find the values of x for which f'(x) = 0, to three decimal places.

$$f(x) = \frac{x^2 - 5}{x^4 + 4}$$

- a. -3.162, 3.162
- b. 0
- c. 0, -3.223, 3.223
- d. 0, -3.096, -0.646, 0.646, 3.096
- e. There are not real values of x for which f'(x) = 0
- 15. Find the derivative of $y = (2x^2 + 2) \ln(x + 8)$

a.
$$4x \ln(x+8)$$

b. $\frac{4x}{x+8}$
c. $\frac{2x^2+2}{\ln(x+8)} + 4x \ln(x+8)$
d. $\frac{2x^2+2}{x+8} - 4x \ln(x+8)$
e. $\frac{2x^2+2}{x+8} + 4x \ln(x+8)$

16. Students in a math class took a final exam. They took equivalent forms of the exam in monthly intervals thereafter. The average score S(t), in percent, after t months was found to be given by $S(t) = 78 - 17 \ln(t + 1)$, $t \ge 0$. Find S'(t).

a.
$$S'(t) = \frac{17}{t+1}$$

b. $S'(t) = 78 - \frac{17}{t+1}$
c. $S'(t) = -\frac{17}{t+1}$
d. $S'(t) = -17 \ln\left(\frac{1}{t+1}\right)$
e. $S'(t) = -\frac{17}{(ln10)(t+1)}$

- 17. During a one-hour race, the velocities of two cars are $v_1(t) = 52(1 \cos(\pi t))$ and $v_2(t) = 99t$, where $0 \le t \le 1$. If, at the beginning of the race, both cars were at the mile 0 mark, which car travelled the farthest during the hour?
 - a. Car 2
 - b. Car 1
 - c. It was a tie.
 - d. The winner cannot be determined because neither $v_1(t)$ nor $v_2(t)$ is differentiable on the interval (0,1).
 - e. The winner cannot be determined because neither $v_1(t)$ nor $v_2(t)$ is integrable on the interval [0,1].
- 18. Find the integral. $\int \sin x \cos^7 x \, dx$
 - a. $7\sin^7 x + C$
 - b. $-7\cos^7 x + C$
 - c. $\frac{1}{8}\sin^8 x + C$
 - d. $-\frac{1}{8}\cos^8 x + C$
 - e. $\frac{1}{8}cos^8x + C$
- 19. Find the derivative of the function $y = x^3 \cos 3x^2$

a.
$$\frac{dy}{dx} = -6x^4 \sin 3x^2 + 3x^2 \cos 3x^2$$

b. $\frac{dy}{dx} = 6x^4 \sin 3x^2 + 3x^2 \cos 3x^2$
c. $\frac{dy}{dx} = \sin 3x^2 + 3x^2 \cos 3x^2$
d. $\frac{dy}{dx} = -6x^4 \sin 3x^2$
e. $\frac{dy}{dx} = -x^3 \sin 3x^2 + 3x^2 \cos 3x^2$

20. Use n = 4 to approximate the value of the integral $\int_{1}^{5} 9x\sqrt{2x-1} dx$ by Simpson's rule.

- a. 253.2
- b. 256.8
- c. 28.5
- d. 236.7
- e. 258.8

- 21. The number of mosquitoes in a lake area after an insecticide spraying decreases at a rate of $M'(t) = -2800e^{-0.2t}$ mosquitoes per hour. If there were 14,000 mosquitoes initially, how many will there be after 4 hours?
 - a. $M(4) \approx 12,742$ mosquitoes
 - b. $M(4) \approx 31,158$ mosquitoes
 - c. $M(4) \approx 14,000$ mosquitoes
 - d. $M(4) \approx 764,374$ mosquitoes
 - e. $M(4) \approx 6291 \text{ mosquitoes}$

22. Find the equation of the tangent line at x = 1 on the curve $\frac{y}{4}(1-x) + x\sqrt{y} + 2x = 5$.

- a. $y = -\frac{33}{2}x + 8$ b. $y = -\frac{33}{8}x + \frac{105}{8}$ c. $y = -\frac{33}{2}x + \frac{51}{2}$ d. $y = -\frac{11}{6}x + \frac{65}{6}$ e. $y = \frac{33}{2}x - 9$
- 23. Suppose that the acceleration of an object is given by $a(t) = 5t^{2/3} + 2e^{-t}$. The object's initial velocity, v(0), is 12 and the object's initial position, s(0), is -3. Find s(t).
 - a. $s(t) = \frac{200t^{3/3}}{9} + 2e^{-t} + 10t 5$ b. $s(t) = 3t^{5/3} - 2e^{-t} + 14$ c. $s(t) = \frac{9t^{8/3}}{8} - 2e^{-t} + 14t - 3$
 - d. $s(t) = \frac{9t^{8/3}}{8} + 2e^{-t} + 12t 3$ e. $s(t) = \frac{9t^{8/3}}{8} + 2e^{-t} + 14t - 5$

24. Find the area of the shaded region.

- 25. The percent of concentration of a certain drug in the bloodstream *x* hours after the drug is administered is given by $K(x) = \frac{5x}{x^2+9}$. At what time is the concentration the maximum?
 - a. 3 hr
 - b. 0.9 hr
 - c. 0.5 hr
 - d. 0.8 hr
 - e. 5 hr

26. Find the derivative of $y = \frac{\ln(5x+5)}{e^{5x+5}}$

a.
$$\frac{1-5[\ln(5x+5)]^2}{\ln[5x+5]e^{(5x+5)}}$$

b.
$$\frac{-5}{(x+1)e^{5x+5}}$$

c.
$$\frac{1}{(5x+5)e^{(5x+5)}}$$

d.
$$\frac{5-(25x+25)\ln(5x+5)}{(5x+5)e^{(5x+5)}}$$

e.
$$\frac{1-(5x+5)\ln(5x+5)}{(5x+5)\ln(5x+5)}$$

$$(5x+5)e^{(5x+5)}$$

27. Find the values of x and y that maximize $Q = xy^2$, where x and y are positive numbers such that $x + y^2 = 7$.

a.
$$x = 0, y = \sqrt{7}$$

b. $x = \sqrt{\frac{7}{2}}, y = \frac{7}{2}$
c. $x = \frac{7}{2}, y = \sqrt{\frac{7}{2}}$
d. $x = 1, y = \sqrt{6}$
e. $x = \frac{7}{2}, y = \sqrt{\frac{21}{2}}$

28. Evaluate the definite integral. $\int_4^9 \frac{t^2+1}{\sqrt{t}} dt$

a.	$\frac{472}{5}$
b.	432 5
c.	212
d.	$\frac{516}{5}$
e.	$\frac{447}{5}$

29. The pH scale is used by chemists to measure the acidity of a solution. It is base 10 logarithmic scale. The pH, P, of a solution and its hydronium ion concentration in moles per liter, H are related as follows:

$$H = 10^{-P}$$

Find the formula for the rate of change $\frac{dH}{dP}$.

a.
$$\frac{dH}{dP} = (\ln 10)10^{-P}$$

b. $\frac{dH}{dP} = -(\ln 10)10^{-P}$
c. $\frac{dH}{dP} = -P(10^{-P-1})$
d. $\frac{dH}{dP} = -\frac{10^{-P}}{\ln 10}$
e. $\frac{dH}{dP} = -(\ln P)10^{-P}$

30. The correlation between respiratory rate and body mass in the first three years of life can be expressed by the function

$$\log R(w) = 1.87 - 0.35 \log w$$

where w is the body weight (in kg) and R(w) is the respiratory rate (in breaths per minute). Find R'(w).

- a. $R'(w) = -25.95w^{-0.35}$
- b. $R'(w) = -25.95w^{-1.35}$
- c. $R'(w) = 74.13w^{-1.35}$
- d. $R'(w) = -25.95w^{-0.65}$
- e. $R'(w) = -74.13w^{-1.35}$
- 31. Find the integral $\int (1-6x)e^{3x-9x^2}dx$

a.
$$(x - 3x^2)e^{3x - 9x^2} + C$$

b. $\frac{1}{3}e^{3x - 9x^2} + C$
c. $3(1 - 6x)e^{3x - 9x^2} + C$
d. $\frac{1}{3}(1 - 6x)e^{3x - 9x^2} + C$
e. $3e^{3x - 9x^2} + C$

- 32. Find two numbers x and y such that their sum is 480 and x^2y is maximized.
 - a. x = 360, y = 120b. x = 240, y = 240c. x = 160, y = 320d. x = 320, y = 160e. x = 120, y = 360

a. b. c. d. e.

33. Use the properties of limits to help decide whether the limit exists. If the limit exists, find its value.

$$\lim_{x \to \infty} \frac{5x^3 + 2x}{-3x^4 + 3x^3 + 6}$$

$$-\frac{5}{3}$$
1
$$\frac{5}{18}$$
0
Does not exist

34. Find the integral
$$\int \frac{t^4+2}{t^5+10t+9} dt$$

a. $\frac{ln|t^5+10t+9|}{5} + C$
b. $\frac{\frac{1}{5}t^5+2t}{\frac{1}{6}t^6+5t^2+9t} + C$
c. $-\frac{1}{5(t^5+10t+9)^2} + C$
d. $-\frac{5}{(t^5+10t+9)^2} + C$
e. $5\ln|t^5+10t+9| + C$

35. Find the derivative of
$$y = \frac{5}{\sin x} + \frac{1}{\cot x}$$

a. $\frac{dy}{dx} = 5 \csc x \cot x - \sec^2 x$
b. $\frac{dy}{dx} = 5 \csc x \cot x - \csc^2 x$
c. $\frac{dy}{dx} = 5 \cos x - \csc^2 x$
d. $\frac{dy}{dx} = -5 \csc x \cot x + \sec^2 x$
e. $\frac{dy}{dx} = \frac{5}{\cos x} - \frac{1}{\cos^2 x}$

36. Evaluate the definite integral $\int_0^1 5x \sqrt[5]{1+x^2} dx$ a. $\frac{25}{6} \left(2^{6/5} - 1 \right)$

a.
$$\frac{25}{6} \left(2^{6/5} - 1 \right)$$

b. $\frac{25}{12} \left(2^{6/5} - 1 \right)$
c. $\frac{5}{2}$
d. $\frac{5}{2} \left(2^{6/5} - 1 \right)$
e. $\frac{25}{6} \sqrt[5]{2}$

37. Find the integral $\int \frac{\log_7 x}{x} dx$

a.
$$\frac{(\ln x)(\log_7 x)^2}{2} + C$$

b.
$$\frac{2x+14}{7x^3}$$

c.
$$\frac{(\ln 7)(\log_7 x)^2}{2} + C$$

d.
$$\frac{(\log_7 x)^2}{2} + C$$

e.
$$\frac{(\log_7 x)^2}{2\ln 7} + C$$

- 38. The number of ducks (in thousands) counted at a certain checkpoint in their migration is given by $O(t) = 5 + 5 \cos\left(\frac{\pi t}{6}\right)$, where t is time in months and t = 0 is October 1. Find the number of ducks passing the checkpoint between October 1 and April 1.
 - a. 29,000
 - b. 29,500
 - c. 30,000
 - d. 29,965
 - e. 35,000

39. Find the integral.
$$\int \frac{x}{5} \tan\left(\frac{x}{5}\right)^2 dx$$

a. $-\frac{1}{10}x^2 \ln\left|\cos\left(\frac{x}{5}\right)^2\right| + C$
b. $\frac{5}{2}\ln\left|\sin\left(\frac{x}{5}\right)^2\right| + C$
c. $\frac{5}{2}\sec^2\left(\frac{x}{5}\right)^2 + C$
d. $-\frac{5}{2}\ln\left|\cos\left(\frac{x}{5}\right)^2\right| + C$
e. $\frac{x}{5}\tan\frac{x}{5} + \ln\left|\cos\frac{x}{5}\right| - \frac{x^2}{50} + C$

40. Find the x-values where the function does not have a derivative.

