1. Let $\lim _{x \rightarrow 10} f(x)=4$ and $\lim _{x \rightarrow 10} g(x)=-6$. Find $\lim _{x \rightarrow 10}[f(x) \cdot g(x)]$.
a. -2
b. -6
c. 10
d. 24
e. -24
2. Decide if the limit exists. If the limit exists, find its value.

$$
\lim _{x \rightarrow 0} \frac{\frac{1}{x+7}-\frac{1}{7}}{x}
$$

a. 0
b. $\frac{1}{49}$
c. Does not exist
d. $-\frac{1}{49}$
e. 1
3. Find the equation of the secant line through the points where x has the given values.

$$
f(x)=3 \sqrt{x} ; x=9, x=25
$$

a. $\quad y=-\frac{3}{8} x+\frac{45}{8}$
b. $y=\frac{3}{8} x-\frac{45}{8}$
c. $y=\frac{3}{2 \sqrt{x}}$
d. $y=-\frac{8}{3} x+33$
e. $y=\frac{3}{8} x+\frac{45}{8}$
4. Find the equation of the tangent line to the curve when x has the given value.

$$
f(x)=\frac{18}{x} ; x=3
$$

a. $y=-2 x+6$
b. $y=-2 x$
c. $y=-2 x+12$
d. $y=-4 x+18$
e. $y=\frac{1}{2} x-\frac{9}{2}$
5. Find $f^{\prime}(x)$ when x has the given value.

$$
f(x)=2 x^{2}-3 x ; x=13
$$

a. $52 x-3$
b. 4
c. 55
d. 1211.1667
e. 49
6. The profit from the expenditure of x thousand dollars on advertising is given by $P(x)=950+$ $25 x-3 x^{2}$. Find the marginal profit when the expenditure is $x=9$.
a. 950 thousand dollars
b. 171 thousand dollars
c. -29 thousand dollars
d. 225 thousand dollars
e. -79 thousand dollars
7. If the price of a product is given by $P(x)=\frac{1024}{x}+2000$, where x represents the demand for the product, find the rate of change of price when the demand is 8 .
a. 4
b. 128
c. -128
d. 16
e. -16
8. Use the product rule to find the derivative of $f(y)=\left(y^{-2}+y^{-1}\right)\left(3 y^{-3}-7 y^{-4}\right)$
a. $f^{\prime}(y)=\frac{42+16 y-3 y^{2}}{y^{7}}$
b. $\quad f^{\prime}(y)=\frac{42-20 y+12 y^{2}}{y^{7}}$
c. $\quad f^{\prime}(y)=\frac{42+20 y-12 y^{2}}{y^{7}}$
d. $f^{\prime}(y)=\frac{42+50 y-12 y^{2}}{y^{7}}$
e. $f^{\prime}(y)=\frac{42+20 y+12 y^{2}}{y^{7}}$
9. Use the quotient rule to find the derivative of $f(x)=\frac{x^{1.7}+3}{x^{3.1}+1}$
a. $f^{\prime}(x)=\frac{-1.4 x^{3.8}+1.7 x^{0.7}-9.3 x^{2.1}}{\left(x^{3.1}+1\right)^{2}}$
b. $f^{\prime}(x)=\frac{-1.4 x^{3.8}-1.4 x^{0.7}-9.3 x^{2.1}-9.3}{\left(x^{3.1}+1\right)^{2}}$
c. $\quad f^{\prime}(x)=\frac{-1.4 x^{3.8}+1.7 x^{0.7}-3.1 x^{1.7}-9.3 x^{2.1}-9.3}{x^{3.1}+1}$
d. $f^{\prime}(x)=\frac{-1.4 x^{3.8}+1.7 x^{0.7}-3.1 x^{1.7}+3 x^{2.1}-9.3}{\left(x^{3.1}+1\right)^{2}}$
e. $f^{\prime}(x)=\frac{-1.4 x^{3.8}+1.7 x^{0.7}+9.3 x^{2.1}}{\left(x^{3.1}+1\right)^{2}}$
10. At what points on the graph of $f(x)=2 x^{3}-9 x^{2}-27 x$ is the slope of the tangent line -3 ?
a. $(1,-34),(16,-164)$
b. $(-1,16),(4,-124)$
c. $(-1,16),(1,-34)$
d. $(0,0),(4,-144)$
e. $(1,-34)(-4,-164)$
11. The formula $E=1000(100-T)+580(100-T)^{2}$ is used to approximate the elevation (in meters) above sea level at which water boils at a temperature of T (in degrees Celsius). Find the rate of change of E with respect to T for a temperature of $75^{\circ} \mathrm{C}$.
a. $\quad 30,000 \mathrm{~m} /{ }^{\circ} \mathrm{C}$
b. $-73,500 \mathrm{~m} /{ }^{\circ} \mathrm{C}$
c. $-30,000 \mathrm{~m} /{ }^{\circ} \mathrm{C}$
d. $-29,000 \mathrm{~m} /{ }^{\circ} \mathrm{C}$
e. $28,000 \mathrm{~m} /{ }^{\circ} \mathrm{C}$
12. The median weight, w (in pounds), of a girl between the ages of 0 and 36 months can be approximated by the function $w(t)=0.0006 t^{3}-0.048 t^{2}+1.61 t+7.60$, where t is measured in months. For a girl of median weight, find the rate of change of weight with respect to time at age 20 months.
a. $0.086 \mathrm{lb} / \mathrm{mo}$
b. $0.410 \mathrm{lb} / \mathrm{mo}$
c. $\quad 1.362 \mathrm{lb} / \mathrm{mo}$
d. $0.882 \mathrm{lb} / \mathrm{mo}$
e. Cannot be determined since $w(t)$ is not differentiable at $t=20$ months
13. When a particular circuit containing a resistor, an inductor, and a capacitor in series is connected to a battery, the current i (in amperes) is given by $i=24 e^{-3 t}\left(e^{2.6 t}-e^{-2.6 t}\right)$ where t is the time (in seconds). Find the time at which the maximum current occurs. Round to the nearest tenth of a second.
a. 0.6 sec
b. $\quad 1.4 \mathrm{sec}$
c. $\quad 1.5 \mathrm{sec}$
d. 0.5 sec
e. There is no absolute maximum value.
14. Using a graphing calculator, find the values of x for which $f^{\prime}(x)=0$, to three decimal places.

$$
f(x)=\frac{x^{2}-5}{x^{4}+4}
$$

a. $-3.162,3.162$
b. 0
c. $0,-3.223,3.223$
d. $0,-3.096,-0.646,0.646,3.096$
e. There are not real values of x for which $f^{\prime}(x)=0$
15. Find the derivative of $y=\left(2 x^{2}+2\right) \ln (x+8)$
a. $4 x \ln (x+8)$
b. $\frac{4 x}{x+8}$
c. $\frac{2 x^{2}+2}{\ln (x+8)}+4 x \ln (x+8)$
d. $\frac{2 x^{2}+2}{x+8}-4 x \ln (x+8)$
e. $\frac{2 x^{2}+2}{x+8}+4 x \ln (x+8)$
16. Students in a math class took a final exam. They took equivalent forms of the exam in monthly intervals thereafter. The average score $S(t)$, in percent, after t months was found to be given by $S(t)=78-17 \ln (t+1), t \geq 0$. Find $S^{\prime}(t)$.
a. $\quad S^{\prime}(t)=\frac{17}{t+1}$
b. $S^{\prime}(t)=78-\frac{17}{t+1}$
c. $\quad S^{\prime}(t)=-\frac{17}{t+1}$
d. $S^{\prime}(t)=-17 \ln \left(\frac{1}{t+1}\right)$
e. $\quad S^{\prime}(t)=-\frac{17}{(\ln 10)(t+1)}$
17. During a one-hour race, the velocities of two cars are $v_{1}(t)=52(1-\cos (\pi t))$ and $v_{2}(t)=$ $99 t$, where $0 \leq t \leq 1$. If, at the beginning of the race, both cars were at the mile 0 mark, which car travelled the farthest during the hour?
a. Car 2
b. Car 1
c. It was a tie.
d. The winner cannot be determined because neither $v_{1}(t)$ nor $v_{2}(t)$ is differentiable on the interval $(0,1)$.
e. The winner cannot be determined because neither $v_{1}(t)$ nor $v_{2}(t)$ is integrable on the interval [0,1].
18. Find the integral. $\int \sin x \cos ^{7} x d x$
a. $7 \sin ^{7} x+C$
b. $-7 \cos ^{7} x+C$
c. $\frac{1}{8} \sin ^{8} x+C$
d. $-\frac{1}{8} \cos ^{8} x+C$
e. $\frac{1}{8} \cos ^{8} x+C$
19. Find the derivative of the function $y=x^{3} \cos 3 x^{2}$
a. $\frac{d y}{d x}=-6 x^{4} \sin 3 x^{2}+3 x^{2} \cos 3 x^{2}$
b. $\frac{d y}{d x}=6 x^{4} \sin 3 x^{2}+3 x^{2} \cos 3 x^{2}$
c. $\frac{d y}{d x}=\sin 3 x^{2}+3 x^{2} \cos 3 x^{2}$
d. $\frac{d y}{d x}=-6 x^{4} \sin 3 x^{2}$
e. $\frac{d y}{d x}=-x^{3} \sin 3 x^{2}+3 x^{2} \cos 3 x^{2}$
20. Use $\mathrm{n}=4$ to approximate the value of the integral $\int_{1}^{5} 9 x \sqrt{2 x-1} d x$ by Simpson's rule.
a. 253.2
b. 256.8
c. 28.5
d. 236.7
e. 258.8
21. The number of mosquitoes in a lake area after an insecticide spraying decreases at a rate of $M^{\prime}(t)=-2800 e^{-0.2 t}$ mosquitoes per hour. If there were 14,000 mosquitoes initially, how many will there be after 4 hours?
a. $M(4) \approx 12,742$ mosquitoes
b. $\quad M(4) \approx 31,158$ mosquitoes
c. $M(4) \approx 14,000$ mosquitoes
d. $M(4) \approx 764,374$ mosquitoes
e. $M(4) \approx 6291$ mosquitoes
22. Find the equation of the tangent line at $x=1$ on the curve $\frac{y}{4}(1-x)+x \sqrt{y}+2 x=5$.
a. $\quad y=-\frac{33}{2} x+8$
b. $y=-\frac{33}{8} x+\frac{105}{8}$
c. $y=-\frac{33}{2} x+\frac{51}{2}$
d. $y=-\frac{11}{6} x+\frac{65}{6}$
e. $y=\frac{33}{2} x-9$
23. Suppose that the acceleration of an object is given by $a(t)=5 t^{2 / 3}+2 e^{-t}$. The object's initial velocity, $v(0)$, is 12 and the object's initial position, $s(0)$, is -3 . Find $s(t)$.
a. $s(t)=\frac{200 t^{8 / 3}}{9}+2 e^{-t}+10 t-5$
b. $s(t)=3 t^{5 / 3}-2 e^{-t}+14$
c. $s(t)=\frac{9 t^{8 / 3}}{8}-2 e^{-t}+14 t-3$
d. $s(t)=\frac{9 t^{8 / 3}}{8}+2 e^{-t}+12 t-3$
e. $s(t)=\frac{9 t^{8 / 3}}{8}+2 e^{-t}+14 t-5$
24. Find the area of the shaded region.

a. $e^{2}-1$
b. $e^{2}+e-1$
c. $e^{2}-e+1$
d. $e^{2}-e$
e. $e^{2}+e$
25. The percent of concentration of a certain drug in the bloodstream x hours after the drug is administered is given by $K(x)=\frac{5 x}{x^{2}+9}$. At what time is the concentration the maximum?
a. 3 hr
b. 0.9 hr
c. 0.5 hr
d. 0.8 hr
e. 5 hr
26. Find the derivative of $y=\frac{\ln (5 x+5)}{e^{5 x+5}}$
a. $\frac{1-5[\ln (5 x+5)]^{2}}{\ln [5 x+5] e^{(5 x+5)}}$
b. $\frac{-5}{(x+1) e^{5 x+5}}$
c. $\frac{1}{(5 x+5) e^{(5 x+5)}}$
d. $\frac{5-(25 x+25) \ln (5 x+5)}{(5 x+5) e^{(5 x+5)}}$
e. $\frac{1-(5 x+5) \ln (5 x+5)}{(5 x+5) e^{(5 x+5)}}$
27. Find the values of x and y that maximize $Q=x y^{2}$, where x and y are positive numbers such that $x+y^{2}=7$.
a. $x=0, y=\sqrt{7}$
b. $x=\sqrt{\frac{7}{2}}, y=\frac{7}{2}$
c. $x=\frac{7}{2}, y=\sqrt{\frac{7}{2}}$
d. $x=1, y=\sqrt{6}$
e. $x=\frac{7}{2}, y=\sqrt{\frac{21}{2}}$
28. Evaluate the definite integral. $\int_{4}^{9} \frac{t^{2}+1}{\sqrt{t}} d t$
a. $\frac{472}{5}$
b. $\frac{432}{5}$
c. 212
d. $\frac{516}{5}$
e. $\frac{447}{5}$
29. The pH scale is used by chemists to measure the acidity of a solution. It is base 10 logarithmic scale. The pH, P, of a solution and its hydronium ion concentration in moles per liter, H are related as follows:

$$
H=10^{-P}
$$

Find the formula for the rate of change $\frac{d H}{d P}$.
a. $\frac{d H}{d P}=(\ln 10) 10^{-P}$
b. $\frac{d H}{d P}=-(\ln 10) 10^{-P}$
c. $\frac{d H}{d P}=-P\left(10^{-P-1}\right)$
d. $\frac{d H}{d P}=-\frac{10^{-P}}{\ln 10}$
e. $\frac{d H}{d P}=-(\ln P) 10^{-P}$
30. The correlation between respiratory rate and body mass in the first three years of life can be expressed by the function

$$
\log R(w)=1.87-0.35 \log w
$$

where w is the body weight (in kg) and $R(w)$ is the respiratory rate (in breaths per minute). Find $R^{\prime}(w)$.
a. $\quad R^{\prime}(w)=-25.95 w^{-0.35}$
b. $\quad R^{\prime}(w)=-25.95 w^{-1.35}$
c. $\quad R^{\prime}(w)=74.13 w^{-1.35}$
d. $\quad R^{\prime}(w)=-25.95 w^{-0.65}$
e. $R^{\prime}(w)=-74.13 w^{-1.35}$
31. Find the integral $\int(1-6 x) e^{3 x-9 x^{2}} d x$
a. $\left(x-3 x^{2}\right) e^{3 x-9 x^{2}}+C$
b. $\frac{1}{3} e^{3 x-9 x^{2}}+C$
c. $3(1-6 x) e^{3 x-9 x^{2}}+C$
d. $\frac{1}{3}(1-6 x) e^{3 x-9 x^{2}}+C$
e. $3 e^{3 x-9 x^{2}}+C$
32. Find two numbers x and y such that their sum is 480 and $x^{2} y$ is maximized.
a. $x=360, y=120$
b. $x=240, y=240$
c. $x=160, y=320$
d. $x=320, y=160$
e. $x=120, y=360$
33. Use the properties of limits to help decide whether the limit exists. If the limit exists, find its value.

$$
\lim _{x \rightarrow \infty} \frac{5 x^{3}+2 x}{-3 x^{4}+3 x^{3}+6}
$$

a. $-\frac{5}{3}$
b. 1
c. $\frac{5}{18}$
d. 0
e. Does not exist
34. Find the integral $\int \frac{t^{4}+2}{t^{5}+10 t+9} d t$
a. $\frac{\ln \left|t^{5}+10 t+9\right|}{5}+C$
b. $\frac{\frac{1}{5} t^{5}+2 t}{\frac{1}{6} t^{6}+5 t^{2}+9 t}+C$
c. $-\frac{1}{5\left(t^{5}+10 t+9\right)^{2}}+C$
d. $-\frac{5}{\left(t^{5}+10 t+9\right)^{2}}+C$
e. $5 \ln \left|t^{5}+10 t+9\right|+C$
35. Find the derivative of $y=\frac{5}{\sin x}+\frac{1}{\cot x}$
a. $\frac{d y}{d x}=5 \csc x \cot x-\sec ^{2} x$
b. $\frac{d y}{d x}=5 \csc x \cot x-\csc ^{2} x$
c. $\frac{d y}{d x}=5 \cos x-\csc ^{2} x$
d. $\frac{d y}{d x}=-5 \csc \mathrm{x} \cot x+\sec ^{2} x$
e. $\frac{d y}{d x}=\frac{5}{\cos x}-\frac{1}{\cos ^{2} x}$
36. Evaluate the definite integral $\int_{0}^{1} 5 x \sqrt[5]{1+x^{2}} d x$
a. $\frac{25}{6}\left(2^{6 / 5}-1\right)$
b. $\frac{25}{12}\left(2^{6 / 5}-1\right)$
C. $\frac{5}{2}$
d. $\frac{5}{2}\left(2^{6 / 5}-1\right)$
e. $\frac{25}{6} \sqrt[5]{2}$
37. Find the integral $\int \frac{\log _{7} x}{x} d x$
a. $\frac{(\ln x)\left(\log _{7} x\right)^{2}}{2}+C$
b. $\frac{2 x+14}{7 x^{3}}$
c. $\frac{(\ln 7)\left(\log _{7} x\right)^{2}}{2}+C$
d. $\frac{\left(\log _{7} x\right)^{2}}{2}+C$
e. $\frac{\left(\log _{7} x\right)^{2}}{2 \ln 7}+C$
38. The number of ducks (in thousands) counted at a certain checkpoint in their migration is given by $O(t)=5+5 \cos \left(\frac{\pi t}{6}\right)$, where t is time in months and $\mathrm{t}=0$ is October 1 . Find the number of ducks passing the checkpoint between October 1and April 1.
a. 29,000
b. 29,500
c. 30,000
d. 29,965
e. 35,000
39. Find the integral. $\int \frac{x}{5} \tan \left(\frac{x}{5}\right)^{2} d x$
a. $-\frac{1}{10} x^{2} \ln \left|\cos \left(\frac{x}{5}\right)^{2}\right|+C$
b. $\frac{5}{2} \ln \left|\sin \left(\frac{x}{5}\right)^{2}\right|+C$
c. $\frac{5}{2} \sec ^{2}\left(\frac{x}{5}\right)^{2}+C$
d. $-\frac{5}{2} \ln \left|\cos \left(\frac{x}{5}\right)^{2}\right|+C$
e. $\frac{x}{5} \tan \frac{x}{5}+\ln \left|\cos \frac{x}{5}\right|-\frac{x^{2}}{50}+C$
40. Find the x-values where the function does not have a derivative.

a. $x=7.2$
b. $x=5$
c. $x=2$
d. $x=2, x=5$
e. Exists at all points

