Calculus & Advanced Topics Spring 2011

- 1. The derivative of $x^2 \cos(x)$ is
- A. $-2x \sin(x)$ B. $-x^2 \sin(x)$ C. $2x \cos(x) x^2 \sin(x)$ D. $2x \sin(x)$ E. $2x \cos(x)$
- 2. $\int_{-1}^{3} (3-x) dx =$ B. 2 A. 1 C. 4.5 D. 7 E. 8
- 3. $\lim_{x \to 3} \frac{x^2 9}{x^2 x 6} =$ E. undefined A. 0 **B**. 1 C. 6/5 D. 3/2
- 4. Find the derivative of $\cos^2(x^2-5)$
- A. $2\cos(x^2-5)$ B. $-2 \sin(2x)$ C. $-4x \sin(x^2-5)$ D. $-4x \cos(x^2-5) \sin(x^2-5)$ E. $-4x \cos(x^2-5) + 2x \sin(x^2-5)$

- 5. How many solutions are there to the equation $x^2 = 2^x$?

B. 1 C. 2 D. 3 E. 4 A. 0

6. If $0 \le x \le 1$, then sin(arccos(x)) =

A. $\sqrt{1-x^2}$ B. $1+x^2$ C. $\operatorname{arcsin}(x)$ D. $\sin(x^2+1)$ E. impossible to determine

7.
$$\int \left(\frac{1}{x} + \frac{1}{x^2}\right) dx =$$

A.
$$\frac{2}{x^2} + \frac{3}{x^3} + C$$

B.
$$\ln(|x|) + \frac{3}{x^3} + C$$

C.
$$\ln(|x|) - \frac{3}{x^3} + C$$

D.
$$\frac{2}{x^2} - \frac{1}{x} + C$$

E.
$$\ln(|x|) - \frac{1}{x} + C$$

8. The derivative of $\arctan(2x+3)$ [that is, the inverse tangent of 2x+3] is

A. 2
$$\operatorname{arcsec}^2(2x+3)$$
 B. $\frac{2}{4x^2+12x+10}$ C. $\frac{1}{1+(2x+3)^2}$ D. $\frac{2}{\sqrt{1-(2x+3)^2}}$ E. $\frac{2}{1+x^2}$

9. Which of the following curves has a vertical asymptote at x = 3 and a horizontal asymptote at y = 2?

A.
$$y = \frac{2x^2 - 1}{x^2 - 4x + 3}$$
 B. $y = \frac{2x - 1}{x^2 - 9}$ C. $y = \frac{x - 2}{x - 3}$ D. $y = \frac{2x^2}{x^2 + 6x + 9}$ E. $y = \frac{x + 2}{x^2 + 3}$

10. Compute the derivative of the function $f(x) = \frac{e^{3x} - x}{x+1}$.

A.
$$\frac{e^{3x}(3x+2)-x}{(x+1)^2}$$
 B. $\frac{e^{3x}(3x+2)+x}{(x+1)^2}$ C. $\frac{3e^{3x}-1}{(x+1)^2}$ D. $\frac{e^{3x}(3x+2)-1}{(x+1)^2}$ E. $\frac{e^{3x}-x}{(x+1)^2}$

11. The function f(x) graphed below has how many critical points in the open interval (0, 2)?

12. Compute
$$\lim_{x \to 0} \frac{2^{3x} - 1}{3x}$$
.
A. ∞ B. ln 2 C. ln 3 D. $\frac{1}{2}$ E. 1

13. "Throughout the spring, the amount of daylight each day increases, but it increases more and more slowly." Suppose G(t) is a continuous function with first and second derivatives that predicts the amount of daylight on day t; that is, $G(t) \approx$ the number of hours of daylight t days after the start of spring. What does the sentence in quotes tell you about G'(t) and G''(t)?

- A. G'(t) > 0 and G''(t) > 0
- B. G'(t) > 0 and G''(t) < 0
- C. G'(t) < 0 and G''(t) > 0
- D. G'(t) < 0, and the sentence tells you nothing about G''(t)
- E. The sentence tells you nothing about either G'(t) or G''(t)

14. Suppose $F'(x) = \sin(mx)$, where *m* is a positive real number, and $F(0) = \frac{2}{m}$. An expression for F(x) is

A. $\frac{1}{m}\sin(mx) - \frac{2}{m}$ B. $m\sin(mx) - \frac{2}{m}$ C. $-\frac{1}{m}\cos(mx) + \frac{1}{m}$ D. $-\frac{1}{m}\cos(mx) + \frac{3}{m}$ E. $\frac{1}{m}\sin(mx) + \frac{3}{m}$

15. If
$$xy + \cos(y) = x^2$$
, then $\frac{dy}{dx}$ is
A. $\frac{2x-y}{x-\sin(y)}$ B. $\frac{2x-y+\sin(y)}{x}$ C. $\frac{2x+\sin(y)}{x}$ D. $2x - y + \sin(y)$ E. $\frac{x^2+x\sin(y)+\cos(y)}{x^2}$

16.
$$\lim_{x \to 2} \frac{2-x}{1-\sqrt{x-1}} =$$

A. 0 B. 1 C. $\sqrt{2}$ D. 2 E. does not exist 17. $\int x \cos(2x) dx =$ A. $x^2 \sin(2x) + C$ B. $\frac{1}{2}x \sin(2x) + \frac{1}{4}\cos(2x) + C$ C. $\frac{1}{2}x^2 \cos(2x) + \frac{1}{2}x \sin(2x) + C$ D. $\frac{1}{2}x \sin(2x) + C$ E. $\frac{1}{4}x^2 \sin(2x) + C$

18. Find the solution to the equation $e^{2x} - 2^x = x^2 - 2$ on the interval [-5,5].

A. $x \approx -0.822992$ B. $x \approx -1.291112$ C. $x \approx -0.145451$ D. $x \approx -1.545343$ E. $x \approx -1.114554$

19. Find the equation of the line tangent to the graph of $f(x) = x^3 - 4x^2 + 2$ at the point where x = 1.

A. y = -5x - 1B. y = -5x + 4C. y = -3x - 1D. $y = (6x^2 - 4x + 1)x + 4$ E. $y = (6x^2 - 4x + 1)x - 1$

20. Given the graph of f''(x), for what values of x in (-1, 3) is f(x) concave up?

21. Find the *x*-values of all critical points of the function $f(x) = x^2 e^{-x^2}$. A. x = -1, 1B. x = -1,0,1C. $x = -\ln 2, 0, \ln 2$ D. $x = -\ln 2, \ln 2$ E. x = 0

22. Use the fact that $\int_{3}^{5} (4f(x) + 3)dx = 26$ to compute $\int_{3}^{5} f(x)dx$. A. 6.5 B. 5.75 C. 3 D. 5 E. 2.5

23. Use the plot of f(x) below to compute $\int_1^5 f(x) dx$.

24. Minerva lives 3 miles directly east of town. She drives to town and then turns onto the highway heading north, traveling at 50 miles per hour. When she is 5 miles away from town, at what rate is her distance from her home increasing?

A. $\frac{250}{\sqrt{34}} \approx 42.9$ mph B. 50 mph C. 30 mph D. 34 mph E. $10\sqrt{34} \approx 58.3$ mph

25. A ball is thrown upward from the top of a 64 ft. building with an initial velocity of 48 feet per second. (Note: The acceleration due to gravity is 32 ft./sec^2 . Ignore air resistance.) How fast is the ball going when it hits the ground?

A. 32 ft./sec B. 48 ft./sec. C. 60 ft./sec. D. 64 ft./sec. E. 80 ft./sec.

26. Which of the following series converges?

A.
$$\sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$$
 B. $\sum_{n=1}^{\infty} \left(\frac{3}{\pi}\right)^n$ C. $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ D. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ E. $\sum_{n=1}^{\infty} \left(1+\frac{1}{n}\right)^n$

27. Find the interval over which $f(x) = \int_0^x \frac{1}{1+t+t^2} dt$ is concave up.

A. $\frac{1}{2} < x < \infty$ B. $-\infty < x < \frac{1}{2}$ C. $-\frac{1}{2} < x < \infty$ D. $-\infty < x < -\frac{1}{2}$ E. $-\infty < x < 1$

28. If
$$y = x^{\sin(x)}$$
, then $\frac{dy}{dx}$ is

A. $\sin(x) x^{\sin(x)-1}$ B. $x^{\sin(x)} \cos(x)$ C. $x^{\sin(x)} \cos(x) \ln(x)$ D. $\sin(x) x^{\sin(x)-1} + x^{\sin(x)} \cos(x) \ln(x)$ E. $\cos(x) \ln(x) + \frac{\sin(x)}{x}$

29. A T-shirt vendor sells 30 T-shirts a day for \$10 each. She estimates that for each \$1 she raises the price, she will sell 4 fewer shirts a day, or for each \$1 she lowers the price, she will sell 4 more shirts a day. What price that will bring her the maximum revenue?

A. \$8.75 B. \$9.50 C. \$10.00 D. \$10.75 E. \$12.00

30. An unfair coin flips heads with probability 2/3. You begin flipping the coin. What is the probability that the first tails you see is on the 8th coin flip?

A.	256/6561	Β.	128/6561	C.	1/6561	D.	1120/6561	E.	2/6561

31. The graphs of the equations $y = 4x - x^3$ and y = x + 2 are tangent to each other at the point

A. (-2,0) B. (-1,-3) C. (-1,1) D. (0,0) E. (1,3)

32. Compute
$$\lim_{x\to\infty} \frac{4\cos(e^{3x}+x^4)}{x}$$
.
A. ∞ B. 1 C. 0 D. -1 E. $-\infty$

33. Observe that $\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ is a decreasing function over the interval $[0, +\infty)$. Using a Riemann sum with four subintervals and sampling the function at the left-hand sides of the subintervals, estimate $\frac{1}{\sqrt{2\pi}}\int_0^1 e^{-\frac{x^2}{2}} dx$ and state whether your estimate is an overestimate, an underestimate, or exactly equal to the integral.

A. ≈ 0.359703, and this answer is an underestimate
B. ≈ 0.359703, and this answer is an overestimate
C. ≈ 0.359703, and this answer is exactly equal to the integral we are approximating
D. ≈ 0.341345, and this answer is an underestimate
E. ≈ 0.341345, and this answer is an overestimate

34.
$$\int_{-\infty}^{0} e^{2x-1} dx =$$

A. $\frac{1}{2e}$ B. $\frac{1}{2}$ C. $\frac{e}{2}$ D. 2 E. $+\infty$

35. Consider the series $S_{\infty} = \sum_{n=1}^{\infty} (-1)^n \frac{n+3}{3n^2 - n + 1}$ and define the Nth partial sum S_N by $S_N = \sum_{n=1}^{N} (-1)^n \frac{n+3}{3n^2 - n + 1}$. The error of the Nth partial sum is $|S_{\infty} - S_N|$. What is the smallest upper bound on the error S₄₀ that you can justify?

- A. The error is bounded from above by 88/5003.
- B. The error is bounded from above by 44/5003.
- C. The error is bounded from above by 50/1000.
- D. The error is bounded from above by 60/1000.
- E. The series has converged by S_{40} . There is no longer any error.

36. Air is being pumped into a spherical balloon at a rate of $5 \text{ cm}^3/\text{min}$. Determine the rate at which the radius of the balloon is increasing when the diameter of the balloon is 100 cm.

- A. $1/(1000\pi)$ centimeters per minute
- B. $3/(4\pi)$ centimeters per minute
- C. $1/(4000\pi)$ centimeters per minute
- D. $4/\pi$ centimeters per minute
- E. $1/(2000\pi)$ centimeters per minute

37. Suppose g(x) is a continuous function for all real x, g(0) = 5 and g(10) = 12. Which of the following equations <u>must</u> have a solution in the interval (0, 10)?

A. g(x) = 5 B. g(x) = 12 C. g(x) = 13 D. g(x) = 6 E. g(x) = 0

38. Which of the following functions satisfies $x \frac{dy}{dx} = 3y - \frac{5}{2}\sqrt{x} - 12?$

A. $y = x^{3}$ B. $y = x^{3} - \sqrt{x} + 4$ C. $y = x^{3} + \sqrt{x} + 4$ D. $y = x^{3} + \sqrt{x}$ E. $y = x^{3} - \sqrt{x}$

39. For which of the following values of *a* and *b* is $\int_{a}^{b} \sin^{3} x \, dx = 0$?

A. $a = 0, b = \pi$ B. $a = 0, b = 3\pi$ C. $a = 2\pi, b = 3\pi$ D. $a = \frac{\pi}{2}, b = \frac{3\pi}{2}$ E. $a = \frac{\pi}{2}, b = \pi$

40.
$$\lim_{h \to 0} \frac{e^{2(x+h)} - e^{2x}}{h} =$$

A. $2e^{2x}$ B. e^{2x} C. 1 D. 2 E. limit does not exist