Calculus \& Advanced Topics Spring 2011

1. The derivative of $x^{2} \cos (x)$ is
A. $-2 \mathrm{x} \sin (\mathrm{x})$
B. $-x^{2} \sin (x)$
C. $2 x \cos (x)-x^{2} \sin (x)$
D. $2 x-\sin (x)$
E. $2 \mathrm{x} \cos (\mathrm{x})$
2. $\int_{-1}^{3}(3-x) d x=$
A. 1
B. 2
C. 4.5
D. 7
E. 8
3. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-x-6}=$
A. 0
B. 1
C. $6 / 5$
D. $3 / 2$
E. undefined
4. Find the derivative of $\cos ^{2}\left(x^{2}-5\right)$
A. $2 \cos \left(x^{2}-5\right)$
B. $-2 \sin (2 x)$
C. $-4 x \sin \left(x^{2}-5\right)$
D. $-4 x \cos \left(x^{2}-5\right) \sin \left(x^{2}-5\right)$
E. $-4 x \cos \left(x^{2}-5\right)+2 x \sin \left(x^{2}-5\right)$
5. How many solutions are there to the equation $x^{2}=2^{x}$?
A. 0
B. 1
C. 2
D. 3
E. 4
6. If $0 \leq x \leq 1$, then $\sin (\arccos (x))=$
A. $\sqrt{1-x^{2}}$
B. $1+\mathrm{x}^{2}$
C. $\arcsin (x)$
D. $\sin \left(x^{2}+1\right)$
E. impossible to determine
7. $\int\left(\frac{1}{x}+\frac{1}{x^{2}}\right) d x=$
A. $\frac{2}{x^{2}}+\frac{3}{x^{3}}+C$
B. $\ln (|x|)+\frac{3}{x^{3}}+C$
C. $\ln (|x|)-\frac{3}{x^{3}}+C$
D. $\frac{2}{x^{2}}-\frac{1}{x}+C$
E. $\ln (|x|)-\frac{1}{x}+C$
8. The derivative of $\arctan (2 x+3)$ [that is, the inverse tangent of $2 x+3$] is
A. $2 \operatorname{arcsec}^{2}(2 x+3)$
B. $\frac{2}{4 x^{2}+12 x+10}$
C. $\frac{1}{1+(2 x+3)^{2}}$
D. $\frac{2}{\sqrt{1-(2 x+3)^{2}}}$
E. $\frac{2}{1+x^{2}}$
9. Which of the following curves has a vertical asymptote at $x=3$ and a horizontal asymptote at $\mathrm{y}=2$?
A. $y=\frac{2 x^{2}-1}{x^{2}-4 x+3}$
B. $y=\frac{2 x-1}{x^{2}-9}$
C. $y=\frac{x-2}{x-3}$
D. $y=\frac{2 x^{2}}{x^{2}+6 x+9}$
E. $y=\frac{x+2}{x^{2}+3}$
10. Compute the derivative of the function $f(x)=\frac{e^{3 x}-x}{x+1}$.
A. $\frac{e^{3 x}(3 x+2)-x}{(x+1)^{2}}$
B. $\frac{e^{3 x}(3 x+2)+x}{(x+1)^{2}}$
C. $\frac{3 e^{3 x}-1}{(x+1)^{2}}$
D. $\frac{e^{3 x}(3 x+2)-1}{(x+1)^{2}}$
E. $\frac{e^{3 x}-x}{(x+1)^{2}}$
11. The function $f(x)$ graphed below has how many critical points in the open interval $(0,2)$?
A. 1
B. 4
C. 5
D. 6
E. 7

12. Compute $\lim _{x \rightarrow 0} \frac{2^{3 x}-1}{3 x}$.
A. ∞
B. $\ln 2$
C. $\ln 3$
D. $1 / 2$
E. 1
13. "Throughout the spring, the amount of daylight each day increases, but it increases more and more slowly." Suppose $G(t)$ is a continuous function with first and second derivatives that predicts the amount of daylight on day t; that is, $G(t) \approx$ the number of hours of daylight t days after the start of spring. What does the sentence in quotes tell you about $G^{\prime}(t)$ and $G^{\prime \prime}(t)$?
A. $G^{\prime}(t)>0$ and $G^{\prime \prime}(t)>0$
B. $G^{\prime}(t)>0$ and $G^{\prime \prime}(t)<0$
C. $G^{\prime}(t)<0$ and $G^{\prime \prime}(t)>0$
D. $G^{\prime}(t)<0$, and the sentence tells you nothing about $G^{\prime \prime}(t)$
E. The sentence tells you nothing about either $G^{\prime}(t)$ or $G^{\prime \prime}(t)$
14. Suppose $F^{\prime}(x)=\sin (m x)$, where m is a positive real number, and $F(0)=\frac{2}{m}$.

An expression for $F(x)$ is
A. $\frac{1}{m} \sin (m x)-\frac{2}{m}$
B. $m \sin (m x)-\frac{2}{m}$
C. $-\frac{1}{m} \cos (m x)+\frac{1}{m}$
D. $-\frac{1}{m} \cos (m x)+\frac{3}{m}$
E. $\frac{1}{m} \sin (m x)+\frac{3}{m}$
15. If $x y+\cos (y)=x^{2}$, then $\frac{d y}{d x}$ is
A. $\frac{2 x-y}{x-\sin (y)}$
B. $\frac{2 x-y+\sin (y)}{x}$
C. $\frac{2 x+\sin (y)}{x}$
D. $2 x-y+\sin (y)$
E. $\frac{x^{2}+x \sin (y)+\cos (y)}{x^{2}}$
16. $\lim _{x \rightarrow 2} \frac{2-x}{1-\sqrt{x-1}}=$
A. 0
B. 1
C. $\sqrt{2}$
D. 2
E. does not exist
17. $\int x \cos (2 x) d x=$
A. $x^{2} \sin (2 x)+C$
B. $\frac{1}{2} x \sin (2 x)+\frac{1}{4} \cos (2 x)+C$
C. $\frac{1}{2} x^{2} \cos (2 x)+\frac{1}{2} x \sin (2 x)+C$
D. $\frac{1}{2} x \sin (2 x)+C$
E. $\frac{1}{4} x^{2} \sin (2 x)+C$
18. Find the solution to the equation $e^{2 x}-2^{x}=x^{2}-2$ on the interval $[-5,5]$.
A. $x \approx-0.822992$
B. $x \approx-1.291112$
C. $x \approx-0.145451$
D. $x \approx-1.545343$
E. $x \approx-1.114554$
19. Find the equation of the line tangent to the graph of $f(x)=x^{3}-4 x^{2}+2$ at the point where $\mathrm{x}=1$.
A. $y=-5 x-1$
B. $y=-5 x+4$
C. $y=-3 x-1$
D. $y=\left(6 x^{2}-4 x+1\right) x+4$
E. $y=\left(6 x^{2}-4 x+1\right) x-1$
20. Given the graph of $f^{\prime \prime}(x)$, for what values of x in $(-1,3)$ is $f(x)$ concave up?
A. $(0,1)$
B. $(1,2)$
C. $(-1,0) \cup(1,2)$
D. $(-1,0) \cup(1,2)$
E. $(0,1) \cup(2,3)$

21. Find the x-values of all critical points of the function $f(x)=x^{2} e^{-x^{2}}$.
A. $x=-1,1$
B. $\quad x=-1,0,1$
C. $\quad x=-\ln 2,0, \ln 2$
D. $x=-\ln 2, \ln 2$
E. $\quad x=0$
22. Use the fact that $\int_{3}^{5}(4 f(x)+3) d x=26$ to compute $\int_{3}^{5} f(x) d x$.
A. 6.5
B. 5.75
C. 3
D. 5
E. 2.5
23. Use the plot of $f(x)$ below to compute $\int_{1}^{5} f(x) d x$.
A. -2
B. -1
C. 0
D. 1
E. 3

24. Minerva lives 3 miles directly east of town. She drives to town and then turns onto the highway heading north, traveling at 50 miles per hour. When she is 5 miles away from town, at what rate is her distance from her home increasing?
A. $\frac{250}{\sqrt{34}} \approx 42.9 \mathrm{mph}$
B. 50 mph
C. 30 mph
D. 34 mph
E. $10 \sqrt{34} \approx 58.3 \mathrm{mph}$
25. A ball is thrown upward from the top of a 64 ft . building with an initial velocity of 48 feet per second. (Note: The acceleration due to gravity is $32 \mathrm{ft} / \mathrm{sec}^{2}$. Ignore air resistance.) How fast is the ball going when it hits the ground?
A. $32 \mathrm{ft} . / \mathrm{sec}$
B. $48 \mathrm{ft} . / \mathrm{sec}$.
C. $60 \mathrm{ft} . / \mathrm{sec}$.
D. $64 \mathrm{ft} . / \mathrm{sec}$.
E. $80 \mathrm{ft} . / \mathrm{sec}$.
26. Which of the following series converges?
A. $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$
B. $\sum_{n=1}^{\infty}\left(\frac{3}{\pi}\right)^{n}$
C. $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$
D. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
E. $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$
27. Find the interval over which $f(x)=\int_{0}^{x} \frac{1}{1+t+t^{2}} d t$ is concave up.
A. $\frac{1}{2}<x<\infty$
B. $-\infty<x<\frac{1}{2}$
C. $-\frac{1}{2}<x<\infty$
D. $-\infty<x<-\frac{1}{2}$
E. $-\infty<x<1$
28. If $y=x^{\sin (x)}$, then $\frac{d y}{d x}$ is
A. $\sin (x) x^{\sin (x)-1}$
B. $x^{\sin (x)} \cos (x)$
C. $x^{\sin (\mathrm{x})} \cos (x) \ln (x)$
D. $\sin (x) x^{\sin (x)-1}+x^{\sin (x)} \cos (x) \ln (x)$
E. $\cos (x) \ln (x)+\frac{\sin (x)}{x}$
29. A T-shirt vendor sells 30 T -shirts a day for $\$ 10$ each. She estimates that for each $\$ 1$ she raises the price, she will sell 4 fewer shirts a day, or for each $\$ 1$ she lowers the price, she will sell 4 more shirts a day. What price that will bring her the maximum revenue?
A. $\$ 8.75$
B. $\$ 9.50$
C. $\$ 10.00$
D. $\$ 10.75$
E. $\$ 12.00$
30. An unfair coin flips heads with probability $2 / 3$. You begin flipping the coin. What is the probability that the first tails you see is on the $8^{\text {th }}$ coin flip?
A. $256 / 6561$
B. $128 / 6561$
C. $1 / 6561$
D. $1120 / 6561$
E. 2/6561
31. The graphs of the equations $y=4 x-x^{3}$ and $y=x+2$ are tangent to each other at the point
A. $(-2,0)$
B. $(-1,-3)$
C. $(-1,1)$
D. $(0,0)$
E. $(1,3)$
32. Compute $\lim _{x \rightarrow \infty} \frac{4 \cos \left(e^{3 x}+x^{4}\right)}{x}$.
A. ∞
B. 1
C. 0
D. -1
E. $-\infty$
33. Observe that $\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$ is a decreasing function over the interval $[0,+\infty)$. Using a Riemann sum with four subintervals and sampling the function at the left-hand sides of the subintervals, estimate $\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-\frac{x^{2}}{2}} d x$ and state whether your estimate is an overestimate, an underestimate, or exactly equal to the integral.
A. ≈ 0.359703, and this answer is an underestimate
B. ≈ 0.359703, and this answer is an overestimate
C. ≈ 0.359703, and this answer is exactly equal to the integral we are approximating
D. ≈ 0.341345, and this answer is an underestimate
E. ≈ 0.341345, and this answer is an overestimate
34. $\int_{-\infty}^{0} e^{2 x-1} d x=$
A. $\frac{1}{2 e}$
B. $\frac{1}{2}$
C. $\frac{e}{2}$
D. 2
E. $+\infty$
35. Consider the series $\mathrm{S}_{\infty}=\sum_{n=1}^{\infty}(-1)^{n} \frac{n+3}{3 n^{2}-n+1}$ and define the $\mathrm{N}^{\text {th }}$ partial sum S_{N} by $\mathrm{S}_{\mathrm{N}}=\sum_{n=1}^{N}(-1)^{n} \frac{n+3}{3 n^{2}-n+1}$. The error of the $N^{\text {th }}$ partial sum is $\left|\mathrm{S}_{\infty}-\mathrm{S}_{\mathrm{N}}\right|$. What is the smallest upper bound on the error S_{40} that you can justify?
A. The error is bounded from above by $88 / 5003$.
B. The error is bounded from above by $44 / 5003$.
C. The error is bounded from above by $50 / 1000$.
D. The error is bounded from above by $60 / 1000$.
E. The series has converged by S_{40}. There is no longer any error.
36. Air is being pumped into a spherical balloon at a rate of $5 \mathrm{~cm}^{3} / \mathrm{min}$. Determine the rate at which the radius of the balloon is increasing when the diameter of the balloon is 100 cm .
A. $1 /(1000 \pi)$ centimeters per minute
B. $3 /(4 \pi)$ centimeters per minute
C. $1 /(4000 \pi)$ centimeters per minute
D. $4 / \pi \quad$ centimeters per minute
E. $1 /(2000 \pi)$ centimeters per minute
37. Suppose $g(x)$ is a continuous function for all real $x, g(0)=5$ and $g(10)=12$. Which of the following equations must have a solution in the interval $(0,10)$?
A. $g(x)=5$
B. $g(x)=12$
C. $g(x)=13$
D. $g(x)=6$
E. $g(x)=0$
38. Which of the following functions satisfies $x \frac{d y}{d x}=3 y-\frac{5}{2} \sqrt{x}-12$?
A. $y=x^{3}$
B. $y=x^{3}-\sqrt{x}+4$
C. $y=x^{3}+\sqrt{x}+4$
D. $y=x^{3}+\sqrt{x}$
E. $y=x^{3}-\sqrt{x}$
39. For which of the following values of a and b is $\int_{a}^{b} \sin ^{3} x d x=0$?
A. $a=0, b=\pi$
B. $a=0, b=3 \pi$
C. $a=2 \pi, b=3 \pi$
D. $a=\frac{\pi}{2}, b=\frac{3 \pi}{2}$
E. $a=\frac{\pi}{2}, \quad b=\pi$
40. $\lim _{h \rightarrow 0} \frac{e^{2(x+h)}-e^{2 x}}{h}=$
A. $2 \mathrm{e}^{2 \mathrm{x}}$
B. $e^{2 x}$
C. 1
D. 2
E. limit does not exist

