TMTA ALGEBRA I 2008

Prepared by:

Iris C. McMurtry
Motlow State Community College
Lynchburg, Tennessee

- $\frac{2x+y}{v^2}\cdot\frac{3y^2-3xy}{v^2+2xy}$ Perform the indicated operations and simplify: 1)
 - A) $\frac{2xy}{y+2x}$
- B) $\frac{y+2x}{2y^2}$ C) $\frac{3(y-x)}{v^2}$
- D) $\frac{3(x-y)}{y}$ E) $\frac{6y}{y-x}$

- Determine the remainder in the given division: $\frac{8x^3 + 4x^2 2}{2x 3}$ 2)
 - A) **34**

B) -38 **C**) 25

D) -29

- E) **22**
- Perform the indicated operations and simplify, assuming $x \neq 0$: 3)

$$\left(-5x^{-4}\right)\left(-3x^{3}\right)^{2}$$

- $15x^2$ B)
- C) $-45x^2$

- D) $15x^5$
- -45x \mathbf{E})
- Which property of real numbers is illustrated by the following? 4)

$$3\left[-2+\left(2+0\right)\right]=3\left[\left(-2+2\right)+0\right]$$

- A) Additive inverse property
- B) Additive identity property
- **C**) Commutative property of addition
- D) Associative property of addition
- Distributive property of multiplication over addition \mathbf{E})

ALGEBRAI ALGEBRAI ALGEBRAI ALGEBRAI

Simplify: 5)

- 3^{3x-1} A)
- 3^{3x+1} B)

 3^{5x-1} C)

- 3^{7x-1} D)
- 3^{7x+1} E)

- Simplify: $-3^2 6(2 \div 4 + x)$ **6**)
 - A) -6x 3
- B) -6x 12 C) -6x + 11
- -6x + 6D)
- E) -6x 21

Which line is perpendicular to 5x - y = 6 and passes through the point of **7**) intersection of 3x + 7y = 5 and x - 2y = 6?

- A) $y = \frac{1}{5}x + \frac{1}{5}$ B) y = 5x 21 C) $y = -\frac{1}{5}x \frac{1}{5}$

- D) $y = \frac{1}{5}x 3$ E) $y = -\frac{1}{5}x 1$

One solution of the equation $2x^3 + 13x^2 + 17x - 12 = 0$ is -3. Find the sum of 8) the other two solutions.

B)

 $\mathbf{C}) \qquad \frac{9}{2}$

D) -11 **E**)

A triangle has side lengths 6 inches, 10 inches, and $2\sqrt{14}$ inches. What is the 9) length of the altitude to the longest side?

- $4\sqrt{5}$ inches A)
- B) $2\sqrt{5}$ inches C) $\sqrt{3}$ inches

- D) $2\sqrt{3}$ inches
- E) 4 inches

10) Given
$$f(x) = 2x^2 - 3x + 1$$
 and $g(x) = 3x + 2$, find $g[f(x)]$.

A)
$$6x^3 - 5x^2 - 3x + 2$$

B)
$$2x^2 + 3$$

C)
$$18x^2 - 9x + 3$$

D)
$$6x^2 - 9x + 5$$

E)
$$18x^2 + 15x + 3$$

11) The sum of the squares of two consecutive odd integers is 290. Which equation describes this situation?

A)
$$(x+2)^2 = 290$$

B)
$$x^2 + (x+1)^2 = 290$$

$$C) \qquad \left\lceil x + \left(x + 1\right)\right\rceil^2 = 290$$

$$D) x^2 + (x+2)^2 = 290$$

$$E) \qquad \left\lceil x + \left(x + 2\right)\right\rceil^2 = 290$$

12) The remainder when $x^3 + 2x^2 + k$ is divided by x + 3 is -7. Find k.

13) Solve for y in $x = \frac{2y}{y+3}$.

A)
$$y = \frac{3x}{2-x} \text{ for } x \neq 2$$

B)
$$y = \frac{3}{2x} \text{ for } x \neq 0$$

C)
$$y = \frac{3}{2-x}$$
 for $x \neq 2$

$$\mathbf{D}) \qquad y = 3x$$

$$\mathbf{E}) \qquad y = \frac{2}{3-x} \ \textit{for} \ x \neq 3$$

A)
$$\frac{9}{16}$$

$$\mathbf{B}) \qquad \frac{5}{8}$$

C)
$$-\frac{6}{7}$$

$$\mathbf{D}) \qquad -\frac{7}{8}$$

E)
$$-\frac{16}{9}$$

15) Simplify: $(3x-2)(2x^2-5x+4)-(x^2+2x-1)$

A)
$$6x^3 - x^2 - 17x - 7$$

B)
$$6x + 10x^2 + 24x - 9$$

C)
$$6x^3 - 20x^2 + 20x - 7$$

$$\mathbf{D)} \qquad 6x^3 + 5x^2 + 2x - 7$$

E)
$$6x^3 - 4x^2 - 3x - 9$$

16) Solve and write solution set using interval notation: $8x^2 + 13x + 5 \ge 0$

A)
$$\left(-\infty, -1\right] \cup \left[-\frac{5}{8}, \infty\right)$$

B)
$$\left[\frac{5}{8},1\right]$$

C)
$$\left[-\frac{5}{4}, -\frac{1}{2}\right]$$

D)
$$\left(-\infty, \frac{5}{8}\right] \cup \left[1, \infty\right)$$

E)
$$\left[-1, -\frac{5}{8}\right]$$

17) Simplify, assuming $b \neq 0$: $\sqrt[3]{\frac{4a}{3b^2}}$

$$\mathbf{A)} \qquad \frac{2\sqrt[3]{3a}}{3b}$$

B)
$$\frac{\sqrt[3]{4a}}{3b}$$

C)
$$\frac{\sqrt[3]{36ab}}{3b}$$

$$\mathbf{D}) \qquad \frac{2\sqrt[3]{a}}{b}$$

E)
$$\frac{2\sqrt[3]{9a}}{3b}$$

18) Solve for x:
$$\frac{x+3}{2} - \frac{x-2}{4} < 2$$

- A) x > 0 B) x > -2 C) x < -2

- D) x < -6
- E) x < 0

A four-wheeler made a trip of 90 miles. If the speed had been increased by **19**) 3 mph, the trip time would have been one hour less. How fast was the fourwheeler traveling?

- A) 27 mph
- B) **24 mph**
- **C**) 21 mph

- D) **18 mph**
- E) 15 mph

Susie has a collection of 16 coins, all nickels, dimes, and quarters, with a total 20) worth of \$2.20. If the dimes were nickels, the quarters were dimes, and the nickels were quarters, then the total worth of the coins would be \$1.65. How many dimes does Susie have?

A) 2 B) 3 **C**) 4

D) 5 E)

Simplify, assuming $a \neq 0$ and $b \neq 0$: $\frac{a^{-2} - b^{-2}}{a^{-1} - b^{-1}}$ 21)

- A) $\frac{1}{a-b}$
- B) $\frac{a+b}{ab}$ C) $\frac{a-b}{ab}$
- D) $\frac{a^2 + ab + b^2}{ab}$ E) $\frac{b-a}{ab}$

- The quadratic equation $ax^2 2x + c = 0$ has two solutions whose product is -622) and whose sum is $-\frac{5}{2}$. Find c.
 - A) $-\frac{5}{3}$

 $\mathbf{B}) \qquad \frac{5}{6}$

 $\mathbf{C}) \qquad \frac{24}{5}$

- **D**) $-\frac{12}{5}$
- E) $\frac{10}{3}$
- Find the solution set for the given inequality: $-5(2x-1)-3 \ge -4(x+1)$ 23)
 - A) $\left[-\frac{1}{3},\infty\right)$ B) $\left(-\infty,\frac{1}{3}\right]$ C) $\left(-\infty,1\right]$

- D) $\left[1,\infty\right)$ E) $\left(-\infty,-\frac{2}{3}\right]$
- One factor of $\left(\frac{1}{xy} + \frac{1}{x^2}\right)$ is $\left(\frac{x}{y} \frac{y}{x}\right)$. Find the other factor. **24**)
 - A) $\frac{xy}{x+y}$
- B) $\frac{xy}{x-y}$ C) $\frac{xy^2}{x^2-y^2}$
- $\mathbf{D}) \qquad \frac{x^2 xy}{xy} \qquad \qquad \mathbf{E}) \qquad \frac{1}{x^2 xy}$
- When completing the square to solve the equation $x^2 9x = 12$, what number 25) is added to both sides of the equation?
 - A) 81

B)

 $C) \qquad \frac{81}{4}$

36 D)

E)

ALGEBRA I ALGEBRA I ALGEBRA I ALGEBRA I

- Which of the following is a factor of the polynomial $3y^3 + y^2 6y 2$ when **26**) factored completely?
 - y + 1A)
- $\mathbf{B}) \qquad \mathbf{y^2 + 1}$

C) $y^2 - 2$

- 3y + 2D)
- E) 3y 1
- Which graph shows the solution set of the given system? **27**)

$$x + y \ge 1$$

$$2x - y \le 6$$

A)

B)

C)

D)

E)

If $4^x = \sqrt{2}$ and $5^y = \frac{1}{5}$, find x + y. **28**)

A) $-\frac{3}{4}$

B) $\mathbf{0}$ C)

D)

E)

- A) $-\frac{7}{12}$
- B) $-\frac{5}{2}$ C) $\frac{13}{3}$

- $\mathbf{D}) \qquad \frac{5}{6}$
- E) $\frac{45}{4}$

Simplify: $2\sqrt[4]{162x} - 5\sqrt[4]{32x}$ **30**)

- A) $-2\sqrt[4]{2x}$
- B) -4
- C) $-2\sqrt[4]{4x^2}$

- **D**) $82\sqrt[4]{2x}$
- E) $-4\sqrt[4]{2x}$

Solve: $\frac{3}{r+1} + \frac{2}{r} = 3$ **31**)

- A) $\left\{\frac{1 \pm i\sqrt{5}}{3}\right\}$ B) $\left\{\frac{1 \pm \sqrt{7}}{3}\right\}$ C) $\left\{1 \pm i\sqrt{5}\right\}$
- D) $\left\{\frac{2 \pm \sqrt{5}}{3}\right\}$ E) $\left\{1 \pm i\sqrt{7}\right\}$

Given that the reciprocal of (y-1) has the same value as (y+2), find the sum 32) of all possible values of y.

A) $\frac{4}{5}$

 $\mathbf{B}) \qquad -\frac{1}{2}$

C)

 $\mathbf{D}) \qquad \frac{2}{3}$

-1 **E**)

- Find the sum of the y-coordinates of all points of intersection of the parabola 33) $y = 2x^2 - x - 5$ and the line 2x - y = 3.

C) $-\frac{5}{2}$

D)

- E)
- Jan flipped a balanced coin and rolled a balanced die. What is the probability 34) that she got heads on the coin and an even number on the die?
 - A) 25%

- B) $33\frac{1}{3}\%$
- **C**) **40%**

D) 50%

- E) $66\frac{2}{3}\%$
- In an arithmetic sequence the term in the n^{th} position is called a_n . If $a_5=27$ 35) and $a_{15} = 72$, find a_{53} .
 - A) 114

126 B)

C) 196

D) 243

- \mathbf{E}) 381
- Find the 8th term in the expansion of $(2x^4 y^2)^9$. **36**)
 - A) $18x^4y^{16}$
- B) $-18x^4y^{16}$ C) $-144x^8y^{14}$
- $-72x^8y^{14}$ D)
 - E) $-576x^8y^{14}$
- Given $i = \sqrt{-1}$ and $x = \sqrt{-4} \left(\sqrt{-4} 2i^2 \right)$, find x^2 . **37**)
 - $A) \qquad -4 + 4i$
- B) -32i

C) 0

D) -32 \mathbf{E}) 32 - 32i 38) Which of the following matches the correct equation with its graph?

A)

B)

C)

D)

E)

ALGEBRA I ALGEBRA I ALGEBRA I ALGEBRA I

Perform the indicated operations and simplify, assuming $a \neq b$ and $a \neq 0$: 39)

$$\frac{a^2 + 2ab + b^2}{2a^2 - 2b^2} \div \frac{a^3 + b^3}{2a}$$

$$\mathbf{A)} \qquad \frac{1}{-b\left(a^2-ab+b^2\right)}$$

B)
$$\frac{a}{(a-b)(a^2-ab+b^2)}$$

C)
$$\frac{a}{(a+b)^2(a-b)}$$

$$\mathbf{D}) \qquad \frac{a}{\left(a-b\right)^2\left(a+b\right)}$$

E)
$$\frac{2a^2b}{(a+b)^2(a-b)}$$

How much pure alcohol should be added to twelve gallons of fluid that is 45% 40) alcohol to make a solution which is 60% alcohol?

A)
$$1\frac{4}{5}$$
 gallons

B)
$$2\frac{1}{2}$$
 gallons

B)
$$2\frac{1}{2}$$
 gallons C) $3\frac{1}{3}$ gallons

D)
$$4\frac{1}{2}$$
 gallons

E)
$$3\frac{1}{5}$$
 gallons

EXTRA #1

Given X(4,-5), Y(-8,9), and Z(6,-3) in the coordinate plane, find the distance from X to the midpoint of the segment joining Y to Z.

 $\sqrt{89}$ A)

- B) $11\sqrt{2}$
 - $\mathbf{C}) \qquad \sqrt{73}$

 $\sqrt{13}$ D)

E) $2\sqrt{10}$

EXTRA #2

How much pure alcohol should be added to twelve gallons of fluid that is 45% alcohol to make a solution which is 60% alcohol?

A) $1\frac{4}{5}$ gallons

- B) $2\frac{1}{2}$ gallons C) $3\frac{1}{3}$ gallons
- D) $4\frac{1}{2}$ gallons
- E) $3\frac{1}{5}$ gallons

EXTRA #3

If $4^{1-2x} = 8^{2x+1}$, find 5x + 2.

A) $\frac{3}{2}$

B) 2 $\mathbf{C}) \qquad \frac{17}{6}$

 $\mathbf{D}) \qquad -\frac{2}{3}$

E) $\frac{3}{4}$

Key Algebra I (2008)

1) \mathbf{C} **21**) B

2) \mathbf{A}

 \mathbf{C} 22)

3) \mathbf{C}

 \mathbf{C} 23)

4) D 24) \mathbf{E}

5) \mathbf{E}

 \mathbf{C} **25**)

B **6**)

 \mathbf{C} **26**)

 \mathbf{C} **7**)

 \mathbf{A}

8) A **27**)

28) \mathbf{A}

9) B **29**) \mathbf{E}

10) D

11) D **30**) \mathbf{E}

В **31**)

12) D **32**) \mathbf{E}

13) \mathbf{A}

D **33**)

14) \mathbf{A}

 \mathbf{A} **34**)

15) \mathbf{C}

35) D

16) \mathbf{A} **36**) \mathbf{C}

17) \mathbf{C} **37**) B

18) \mathbf{E}

38) A

19) \mathbf{E}

39) B

 \mathbf{E} **20**)

40) D

EXTRA #1

EXTRA #2 D EXTRA #3 A