How Democratic Is Our Democracy?

 Using Math to Measure Fairness in PoliticsDR. BRAD FOX
PROFESSOR OF MATHEMATICS

Using Math to Measure Fairness in Politics

> Gerrymandering

$>$ Election methods

What is Gerrymandering?

- Gerrymandering is the intentional practice of manipulating boundaries through redistricting to gain an advantage to a political party or group.
- Portmanteau for the last name of Governor Elbridge Gerry of Massachusetts and the salamander based on the shape of a new voting district in 1812

Gerrymandering Examples

- Democrats have done it in Maryland
- "broken-winged pterodactyl lying prostrate across the state"
- "blood spatter at a crime scene"

Gerrymandering Examples

- Republicans have done it here in Tennessee

Gerrymandering Examples

- Republicans have done it here in Tennessee
- The Nashville metropolitan area has been divided into 4 red districts

Why is Gerrymandering Bad?

- Creates a discrepancy between partisan representation in government compared the political leanings of that state
- Can effectively disenfranchises minority groups
- "We have to end the practice of drawing our congressional districts so that politicians can pick their voters and not the other way around." - Barack Obama

Gerrymandering 101

Three different ways to divide 50 people into five districts

- Packing concentrating the opposing party's voting power into one or a few districts
> Cracking - diluting the voting power of the opposing party's supporters across many districts

1. Perfect representation

3 blue districts,
2 red districts
BLUE WINS
2. Compact, but unfair

5 blue districts, 0 red districts BLUE WINS
3. Neither compact
nor fair

2 blue districts, 3 red districts RED WINS

Using Math to Quantify Gerrymandering

- The Efficiency Gap is a measure to quantify the amount of packing and cracking by calculating the percentage of net wasted votes
- Over 7% is considered gerrymandered
- Based on 2022 votes: MD map - 8.1\% TN map - 10.9\%

Using Math to Quantify Gerrymandering

- Ideally, districts should be compact
- The Roeck Method:

Draw the smallest circle that a given district will fit completely within. The Roeck score is the ratio between the area of the district and the area of the circle.

Pop Quiz Time

- Which of the following district maps of Michigan are gerrymandered?

Pop Quiz Time

Pop Quiz Time - Michigan 55 D/45 R

11 Dem, 2 Rep
5 Dem, 8 Rep
Actual - 7 Dem, 6 Rep

Can Weird Districts Be Good?

- Illinois' $4^{\text {th }}$ Distric \dagger
- Connects two Hispanic neighborhoods
- Elected the first Latino member of Congress in the Midwest

Voting Methods

- Plurality Method (Popular Vote)
> Vote for a single candidate, winner receives the most votes

Voting Methods

- Plurality Method (Popular Vote)
- Vote for a single candidate, winner receives the most votes
- Elimination Method (Ranked Choice Voting)

1. All voters rank every candidate

BALLOT

$>$ 2. If a candidate has a majority of first-place votes, they win
3. The candidate with the fewest first-place votes is eliminated
4. Redistribute the eliminated candidate's ballots and return to step 2

Ranked Choice Voting in the U.S.

- Two states - Maine and Alaska - use RCV for some statewide elections
- Alaska will use RCV in the 2024 Presidential election
- 47 cities use RCV for local elections such as NYC, San Francisco, Salt Lake City, and Minneapolis
> Five states including Tennessee have banned the use of RCV in any state or municipal elections

Using Math to Measure Election Fairness

- Fairness Criteria - conditional scenarios where a specific outcome is expected
- Majority Criterion
- If a candidate receives a majority of first-place votes, then they should win the election
- Unfavorable Majority Criterion
- If a candidate receives a majority of last-place votes, then they should NOT win the election

Fairness Criteria Violations?

Using Math to Measure Election Fairness

- Condorcet Criterion

If a candidate is preferred by voters in pairwise competition over EVERY other candidate, then they should win the election

- Monotonicity Criterion
- If a candidate would win an election, then after changes in ballots are made that favor that candidate, they should still win the election.

CoSTEM Dean Election

- Four candidates in a Dean election: Karen Meisch (M), Kallina Dunkle (D), Jackie Vogel (V), and Leong Lee (L)
- 80 CoSTEM faculty voters

\# of voters	25	22	17	16
$1^{\text {st }}$ choice	M	V	L	D

- Plurality Method - Dean Meisch wins the election

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$
$1^{\text {st }}$ choice	M	V	L	D	D	V
$2^{\text {nd }}$ choice	D	D	V	L	L	L
$3^{\text {rd }}$ choice	V	L	D	M	V	M
$4^{\text {th }}$ choice	L	M	M	V	M	D

- Elimination Method
- Round 1: $\mathrm{M}-25, \mathrm{~V}-22, \mathrm{~L}-17, \mathrm{D}-16$, Dunkle is eliminated

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$
$\mathbf{1}^{\text {st }}$ choice	M	V	L	D	D	V
$2^{\text {nd }}$ choice	D	D	V	L	L	L
$3^{\text {rd }}$ choice	V	L	M	M	V	M
$4^{\text {th }}$ choice	L	M	M	V	M	D

- Elimination Method
- Round 1: $\mathrm{M}-25, \mathrm{~V}-22, \mathrm{~L}-17, \mathrm{D}-16$, Dunkle is eliminated
- Round 2: $M-25, V-22, L-33$, Vogel is eliminated

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$
1 $^{\text {st }}$ choice	M	V	L	D	D	V
2 $^{\text {nd }}$ choice	D	D	V	L	L	L
$3^{\text {rdd }}$ choice	V	L	M	M	V	M
$4^{\text {th }}$ choice	L	M	M	V	M	D

- Elimination Method
- Round 1: $\mathrm{M}-25, \mathrm{~V}-22, \mathrm{~L}-17, \mathrm{D}-16$, Dunkle is eliminated
- Round 2: $M-25, V-22, L-33$, Vogel is eliminated
- Final Round: $M-25, L-55$, Lee is the winner

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$
1 $^{\text {st }}$ choice	M	V	L	D	D	V
2 $^{\text {nd }}$ choice	D	D	V	L	L	L
$3^{\text {rd }}$ choice	V	L	D	M	V	M
$4^{\text {th }}$ choice	L	M	M	V	M	D

- Were either of these outcomes unfair?
- No candidate had a majority of first-place votes, so the Majority Criterion is satisfied
- Meisch has 45 last place votes, so the Plurality Method violated the Unfavorable Majority Criterion

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$
$1^{\text {st }}$ choice	M	V	L	D	D	V
$2^{\text {nd }}$ choice	D	D	V	L	L	L
$3^{\text {rd }}$ choice	V	L	D	M	V	M
$4^{\text {th }}$ choice	L	M	M	V	M	D

$>$ Was the Elimination Method fair?
$>$ Condorcet Criterion?

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$
$\mathbf{1}^{\text {st }}$ choice	M	V	L	D	D	V
$2^{\text {nd }}$ choice	D	D	V	L	L	L
$3^{\text {rd }}$ choice	V	L	D	M	V	M
$4^{\text {th }}$ choice	L	M	M	V	M	D

$>$ Was the Elimination Method fair?
D Dunkle wins 53 to 27 over Meisch

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$
1 $^{\text {st }}$ choice	M	V	L	D	D	V
2 $^{\text {nd }}$ choice	D	D	V	L	L	L
$3^{\text {rd }}$ choice	V	L	D	M	V	M
$4^{\text {th }}$ choice	L	M	M	V	M	D

$>$ Was the Elimination Method fair?
> Dunkle wins 53 to 27 over Meisch
D Dunkle wins 41 to 39 over Vogel

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$
1 $^{\text {st }}$ choice	M	V	L	D	D	V
$2^{\text {nd }}$ choice	D	D	V	L	L	L
$3^{\text {rd }}$ choice	V	L	D	M	V	M
$4^{\text {th }}$ choice	L	M	M	V	M	D

\Rightarrow Was the Elimination Method fair?
> Dunkle wins 53 to 27 over Meisch
>Dunkle wins 41 to 39 over Vogel

- Dunkle wins 61 to 19 over Lee

D Dunkle is favored over all candidates, so the Condorcet Criterion was violated by BOTH methods

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$
1 $^{\text {st }}$ choice	M	V	L	D	D	V
$2^{\text {nd }}$ choice	D	D	V	L	L	L
$3^{\text {rd }}$ choice	V	L	D	M	V	M
$4^{\text {th }}$ choice	L	M	M	V	M	D

- Elimination Method Revisited - Some Vogel supporters moved Lee up to their top choice

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{1 1}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$	9
1 $^{\text {st }}$ choice	M	V	L	D	D	V	L
$2^{\text {nd }}$ choice	D	D	V	L	L	L	V
$3^{\text {rd }}$ choice	V	L	D	M	V	M	D
$4^{\text {th }}$ choice	L	M	M	V	M	D	M

- Elimination Method Revisited - Some Vogel supporters moved Lee up to their top choice
$>$ Round 1: $M-25, V-13, L-26, D-16$, Vogel is eliminated

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{1 1}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$	9
1 $^{\text {st }}$ choice	M	V	L	D	D	V	L
$2^{\text {nd }}$ choice	D	D	V	L	L	L	V
$3^{\text {rd }}$ choice	V	L	D	M	V	M	D
$4^{\text {th }}$ choice	L	M	M	V	M	D	M

- Elimination Method Revisited - Some Vogel supporters moved Lee up to their top choice
>Round 1: $M-25, V-13, L-26, D-16$, Vogel is eliminated
- Round 2: $M-25, L-28, D-27$, Meisch is eliminated

CoSTEM Dean Election

\# of voters	$\mathbf{2 5}$	$\mathbf{1 1}$	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{2}$	9
1 $^{\text {st }}$ choice	M	V	L	D	D	V	L
2 $^{\text {nd }}$ choice	D	D	V	L	L	L	V
$3^{\text {rd }}$ choice	V	L	D	M	V	M	D
$4^{\text {th }}$ choice	L	M	M	V	M	D	M

- Elimination Method Revisited - Some Vogel supporters moved Lee up to their top choice
Round 1: $M-25, V-13, L-26, D-16$, Vogel is eliminated
- Round 2: $M-25, L-28, D-27$, Meisch is eliminated
$>$ Final Round: L-28, D-52, Dunkle is the winner
- This violates the Monotonicity Criterion

A Better Voting Method?

- Method of Pairwise Comparisons

Compare all candidates in head-to-head competition, winner is the candidate that wins the most matchups

- Would always satisfy the Majority, Unfavorable Majority, Condorcet, and Monotonicity Criteria

A Better Voting Method?

FCS Coaches Poll			
Rank	team	trend	POINTS
1	530 S. Dakota St. (26) 9-0	-	650
2	4. Furman 8-1	-	612
3	G4\% Montana 8-1	-	603
4	䨘 Idaho 7 -2	-1	575
5	(Montana St. $7-2$	$\triangle 3$	533
6	(5) South Dakota 7-2	$\triangle 6$	492
7	NC Central $8-1$	$\triangle 2$	491
8	4. Delaware 7-2	- 2	386
9	(5) Forida A\&M 8-1	-4	378
10	- Incarnate Word 7-2	* 6	368
11	S. Sacramento St. 6-3	$\checkmark 4$	355
12	N3 North Dakota 6-3	-3	346
13	N. Dakota St. 6-3	-3	324
14	. ${ }^{\text {\% }}$ Austin Peay $7-2$	- 3	304

A Better Voting Method?

- Extended Borda Method
- Used in Mario Kart and NASCAR
\checkmark Points difference between $1^{\text {st }}$ and $2^{\text {nd }}>2^{\text {nd }}$ and $3^{\text {rd }} \geq$ $3^{\text {rd }}$ and $4^{\text {th }} \ldots$
- Candidate who earns the most points wins
V Versions are used in Iceland, Kiribati, and Nauru

